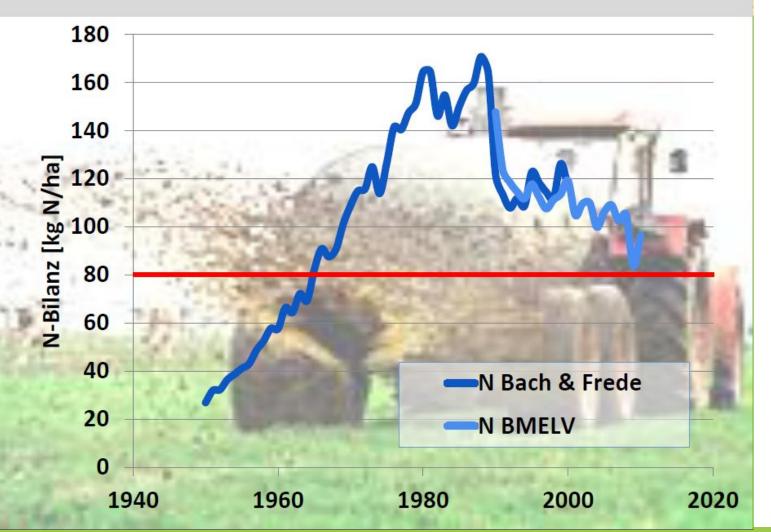


Mit Sorte und Anbau die Nährstoffeffizienz steigern

Winterforen Saaten-Union

Sven Böse Januar 2016

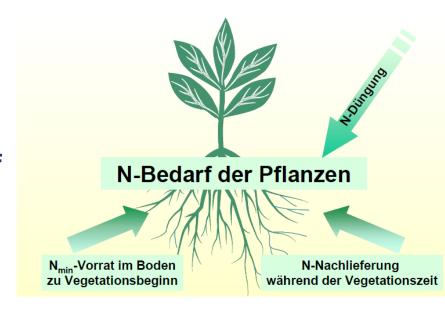
Die Themen



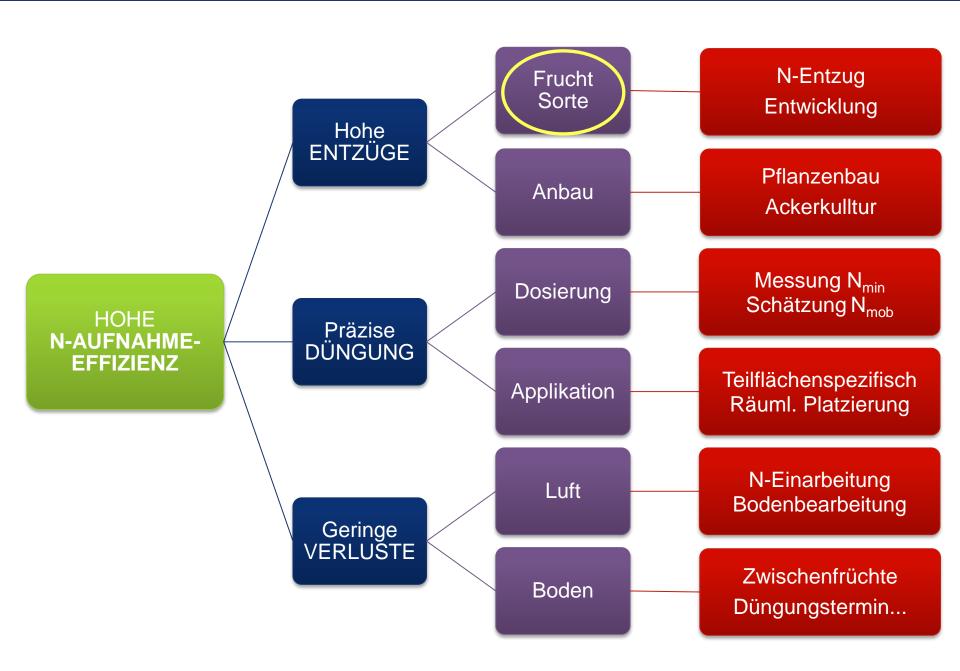
- Was kommt auf uns zu?
- Anpassung Anbau
 - Stickstoffeffiziente Produktion
- Anpassung Sortenwahl
 - Ertrag oder Protein
 - Qualitätsbewertung
- Anpassung Fruchtfolge
 - Extensivfrüchte neu bewerten

N-Bilanzüberschuss Des Sektors Landwirtschaft Bundesrepublik

Grundsätze für die Anwendung von Düngemitteln nach der DVO (Auszug Entwurf 12/2014)

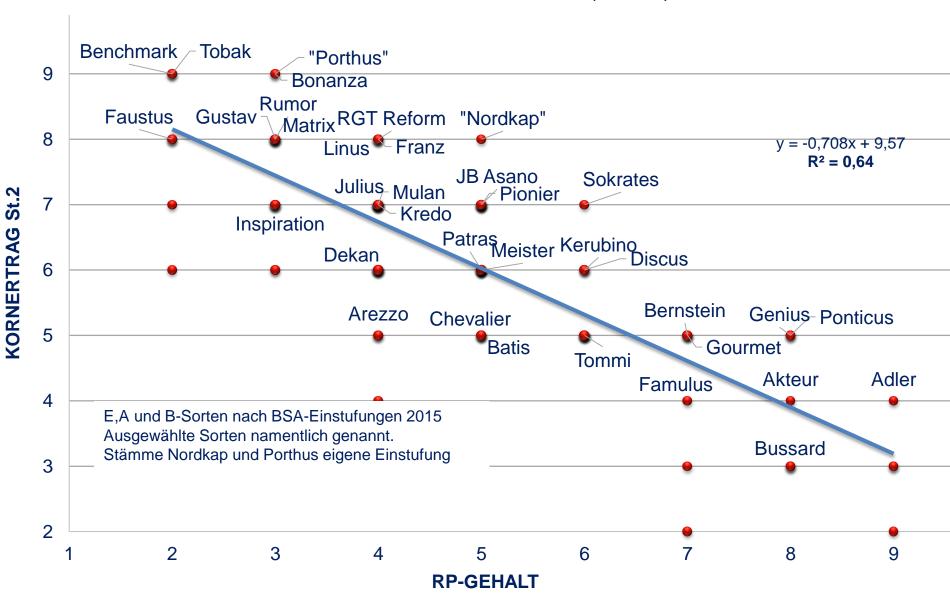


- Die Anwendung von Düngemitteln ist unter Berücksichtigung der Standortbedingungen auf ein Gleichgewicht zwischen dem voraussichtlichen Nährstoffversorgung aus dem Boden und aus der Düngung auszurichten.
- Aufbringungszeitpunkt und -menge sind so zu wählen, dass die Nährstoffe den Pflanzen zeitgerecht in einer dem Nährstoffbedarf der Pflanzen entsprechenden Menge zur Verfügung stehen.
- Vor dem Aufbringen von wesentlichen N\u00e4hrstoffmengen hat der Betriebsinhaber den D\u00fcngebedarf der Kultur f\u00fcr jeden Schlag oder jede Bewirtschaftungseinheit zu ermitteln.
- Der ermittelte Düngebedarf darf nur überschritten werden, soweit auf Grund nachträglich eintretender Umstände, insbesondere Bestandsentwicklung oder Witterungsereignisse, ein höherer Düngebedarf besteht.



Beim Stickstoffbedarf sind zu berücksichtigen (Auszug Entwurf DüVO)

- Die Stickstoffbedarfswerte nach dem Ertragsniveau im Durchschnitt der letzten drei Jahre.
- Der im Boden verfügbare Stickstoff
- Die standortabhängig zusätzlich pflanzenverfügbar werdende
 Stickstoff aus dem Bodenvorrat


- Die Nachlieferung von N aus organischer Düngung im Vorjahr in Form eines Abschlags in Höhe von 10% der aufgebrachten Menge an Gesamtstickstoff,
- Die Nachlieferung von Stickstoff aus Vor- und Zwischenfrüchten während des Wachstums

Kornertrag und Rohproteingehalt

von Winterweizensorten (n=124)

Korn-N-Erträge der Qualitätsgruppen

Sortenmittel aus 112 produktionstechnischen Versuchen Deutschland 2009 bis 2015 mit jeweils 36 Winterweizensorten

		Qualitätsgruppe						
		Е	A	В	C			
Kornertrag	dt/ha	90,4	94,9	98,7	99,0			
Rohprotein-Gehalt	% i.TM	13,7	13,1	12,6	12,5			
Rohprotein-Ertrag	dt/ha	10,7	10,7	10,7	10,6			
Korn-N-Ertrag	kg/ha	187	187	188	186			

23.12.2015

Praktische N-Düngung

	C - Weizen		A/B - Weizen		E - Weizen			
RP-Gehalt	11,5 %		12,5 %		14 %			
Kornertrag	95 dt/ha		88 dt/ha		80 dt/ha			
	%	kg/ha	%	kg/ha	%	kg/ha		
	N-Aufnahme in der Vegetation 1)							
EC 13 - 32	30	72	29	70	28	67		
EC 33 - 49	32	77	31	74	30	72		
EC 50 - 92	38	91	40	96	42	101		
Summe		240		240		240		
	"N-Bedarfswert" nach DüVO							
N-Bedarfswert		225		238		260		
- Mineraldüngung ²⁾		185		198		220		
- davon genutzt	91	168	90	178	89	196		
Differenz zu 240 kg		72		62		44		
N-Aufnahme	muss aus N _{mob} zur Verfügung stehen							

¹⁾ Exemplarisch, erhöhte Spätdüngung zu E-Weizen ²⁾ Bei 30 kg Nmin und Vorfrucht Raps

Die N-Versorgung des Weizens nach der novellierten Düngeverordnung

- Die DüVO impliziert einen unterschiedlichen N-Bedarf der Qualitätsgruppen. Tatsächlich ist deren Entzug gleich hoch.
- Die N-Versorgung nach der DüVO wird für E-Weizen großzügiger gehandhabt als für A/B und C-Weizen.
 - ➤ E-Weizen auch zukünftig ausreichend versorgt, zumal auf den typisch kontinentaleren Standorten
 - ➤ A/B-Weizen knapper versorgt, insbesondere auf Mineralböden in Hochertragsregionen
 - ➤ C-Weizen nur auf Standorten mit hoher Nachlieferung aus dem Boden ausreichend versorgt
- Je ertragsorientierter die Weizenproduktion, umso wichtiger ist eine ausreichende N-Versorgung aus den mobilisierbaren Bodenvorräten.

Effiziente Stickstoffnutzung

N-Angebot

Düngung (Menge, Form, Applikation)

N_{min}, N_{mob}
Verluste
Festlegung.....

N-Aufnahme

Wurzelaktivität Mycorrhizza Bodenstruktur Sink-Kapazität Langlebigkeit

N-Verwertung

Nutzungart (Korn, GPS) Ernteindex Matabolismus Harvestindex

N-Nutzung

Gebäck Fleisch Milch Alkohol Stärke

Erfolgsgrößen für die Stickstoffeffizienz

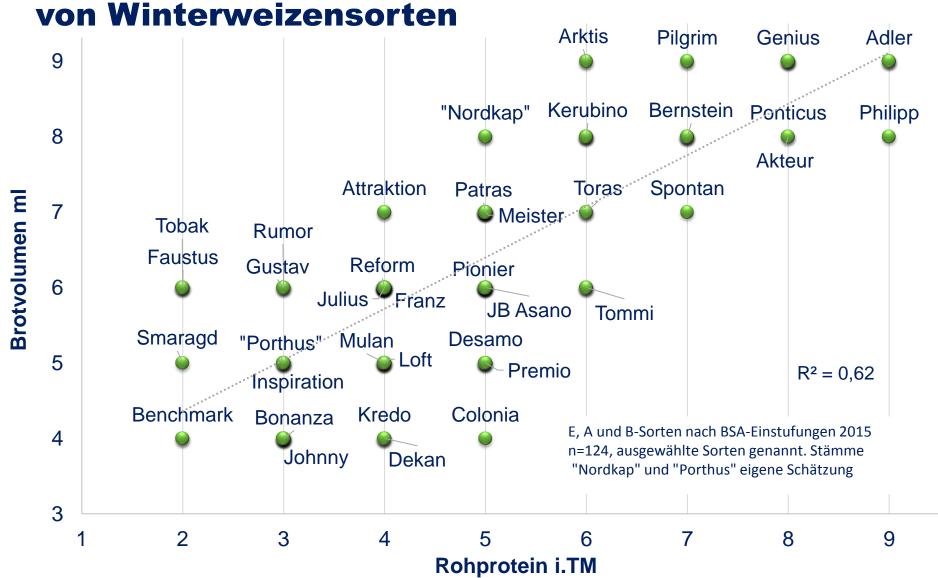
Aufnahme-Effizienz

$$= \frac{N - Aufnahme}{N - Angebot}$$

$$= \frac{200 \ kg \ N - Pflanze}{250 \ kg \ N - Angebot}$$

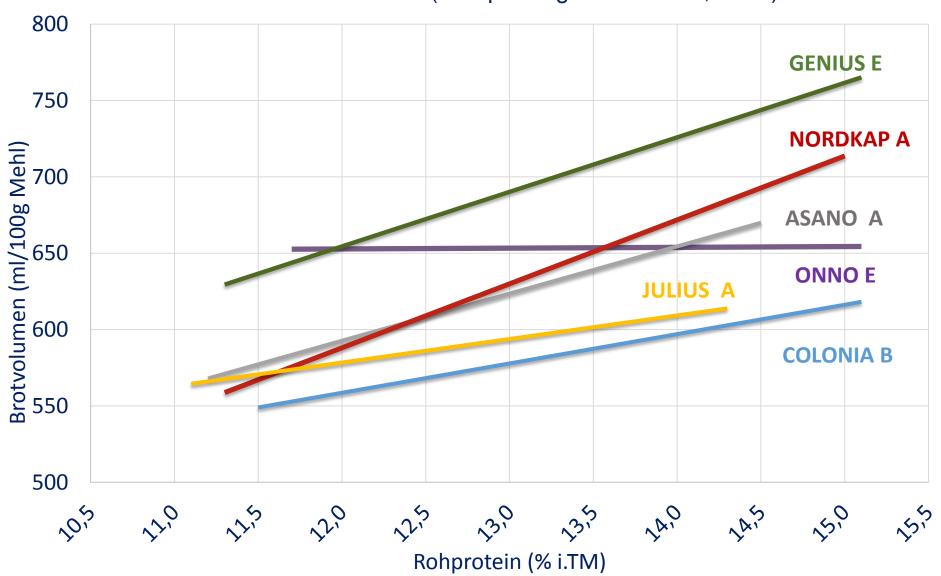
Verwertungs-Effizienz

$$= \frac{Korn N - Ertrag}{N - Angebot}$$

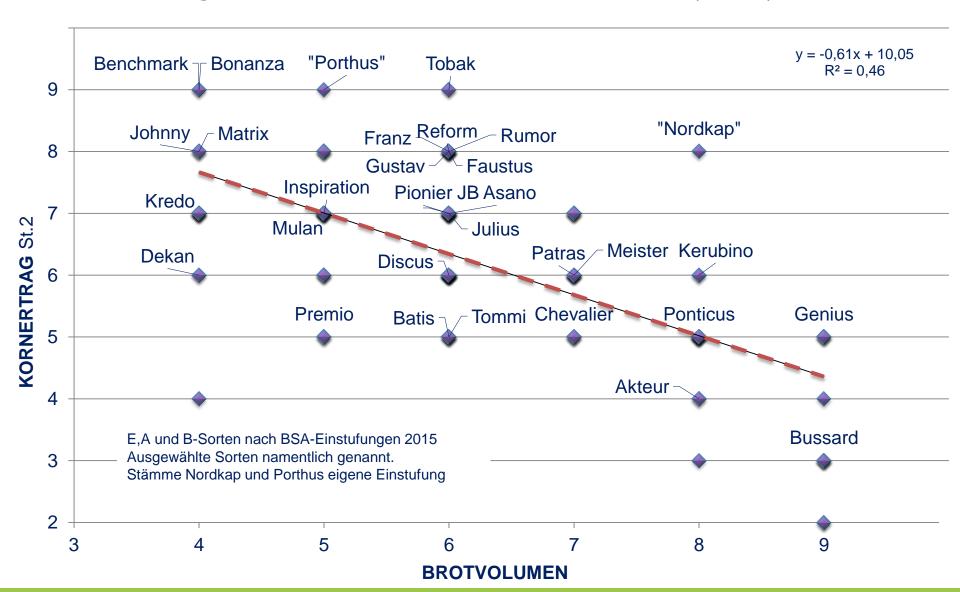

Nutzungs-Effizienz

$$= \frac{Nutzen}{N - Angebot}$$

Rohprotein und Brotvolumen



Beziehung zwischen Rohprotein-Gehalt


und Brotvolumen (Wertprüfung 2013 - 2014, n=16)

Mehr Brot je Hektar!

Kornertrag und Brotvolumen von Winterweizensorten (n=124)

Angepasste Sortenwahl Winterweizen

- Exportweizen mit hohem Preisaufschlag mindestens 14% RP
 - > E-Sorten mit sehr hohen RP-Gehalten (z.B. GENIUS)
- Qualitätsweizen mit geringem Preisaufschlag mindestens 12,5 / 13,0 % RP
 - > Ertragreichste A-Sorten mit hohem RP-Gehalt (z.B. NORDKAP)
- Brotweizen ohne Qualitätsaufschläge mindestens 11,0 % RP
 - Hochertragreiche B-Sorten (z.B. PORTHUS)
- Futterweizen
 - Höchster Korn- bzw. Kornprotein-Ertrag (z.B. ELIXER)
- "Umweltschonender Backweizen 2020"?
 maximal 11,5 % RP, Sortenseparierung
 - Sorten mit maximaler N-Nutzungseffizienz (FAUSTUS, TOBAK)

Anpassung Fruchtfolgen an die DüVO

- Ausnutzung N_{mob} verbessern: Silomais, Körnermais, Betarüben, Kartoffeln....
- N-Aneignung erhöhen
 Hybridroggen statt Stoppel- und Maisweizen
- Organische Herbstdüngung (bis 60 kg N/ha) neben Raps und ZF auch Wintergerste
- N-Exporte verringern (Steigerung N_{mob}-Potential) Bed.wert Braugerste 140, Entzug 69 kg N/ha Bed.wert Hafer 130 kg N/ha, Düngung 60 – 80 kg N/ha
- N-Verluste verringern
 Zwischenfrüchten verringern Auswaschung um
 ca. 40 kgN/ha und erhöhen N_{mob} Nutzung
- Luftstickstoff assimilieren 60 dt/ha Ackerbohnen: 300 kg N/ha von 336 kg N/ha Bedarf N-Entzug 246 kg N/dt Korn, Anrechnung 10 kg/ha!

Zusammenfassung

Anpassung Anbau

 Effiziente Anbauverfahren mit Hochleistungsgenetik

Anpassung Sortenwahl

 Sorten mit höchster
 Aufnahme, -Verwertungsund Nutzungseffizienz

Anpassung Fruchtfolge

Interessante Ansätze v.a.
 auch mit Extensivkulturen